\{ A / L \}: Autogenerating Supervised Learning Programs

José P. Cambronero, Martin Rinard
MIT
(Idealized) Supervised Learning

Labeled Data -> \((\mathbf{X}, y)\) -> Supervised Model

New Unlabeled Data -> \((\mathbf{X}, ?)\) -> Supervised Model

\((\mathbf{X}, \hat{y})\)
(Reality) Pipelines

Labeled Data

Non-numeric features

Missing data

Feature scaling

Feature selection

Supervised Model

Pipeline Code

Labeled Data

t_1 → t_2 → t_3 → t_4 → l → max e
(Reality) Choices

WEKA
statsmodels
scikit-learn
TensorFlow
pandas
\(y_{it} = \beta'x_{it} + \mu_i + \epsilon_{it} \)
R
PYTORCH
(Reality) Choices
(Reality) Choices

1.1. Generalized Linear Models
 ▶ 1.1.1. Ordinary Least Squares
 ▶ 1.1.1.1. Ordinary Least Squares Complexity
 ▶ 1.1.2. Ridge Regression
 ▶ 1.1.2.1. Ridge Complexity
 ▶ 1.1.2.2. Setting the regularization parameter and cross-validation
 ▶ 1.1.3. Lasso
 ▶ 1.1.3.1. Setting regularization parameter
 ▶ 1.1.3.1.1. Using cross-validation
 ▶ 1.1.3.1.2. Information-theoretic based model selection
 ▶ 1.1.3.1.3. Comparison with the regularization parameter of SVM
 ▶ 1.1.4. Multi-task Lasso
 ▶ 1.1.5. Elastic-Net
 ▶ 1.1.6. Multi-task Elastic-Net
 ▶ 1.1.7. Least Angle Regression
 ▶ 1.1.8. LARS Lasso
 ▶ 1.1.8.1. Mathematical formulation
 ▶ 1.1.9. Orthogonal Matching Pursuit (OMP)
 ▶ 1.1.10. Bayesian Regression
 ▶ 1.1.10.1. Bayesian Ridge Regression
 ▶ 1.1.10.2. Automatic Relevance Determination - ARD
 ▶ 1.1.11. Logistic regression
 ▶ 1.1.12. Stochastic Gradient Descent - SGD
 ▶ 1.1.13. Perceptron
 ▶ 1.1.15. Robustness regression: outliers and modelling errors
 ▶ 1.1.15.1. Different scenarios and useful concepts
 ▶ 1.1.15.2. RANSAC - Random Sample Consensus
 ▶ 1.1.15.3. Details of the algorithm
 ▶ 1.1.15.3.1. Theorem 1: estimation: generalized median-based estimator
 ▶ 1.1.15.4. Huber Regression
 ▶ 1.1.15.5. Notes
 ▶ 1.1.16. Polynomial regression: extending linear models with

1.2. Linear and Quadratic Discriminant Analysis
 ▶ 1.2.1. Dimensionality reduction using Linear Discriminant
 ▶ 1.2.2. Mathematical formulation of the LDA and QDA classifier
 ▶ 1.2.3. Mathematical formulation of LDA dimensionality reduction
 ▶ 1.2.4. Shrinkage
 ▶ 1.2.5. Estimation algorithms

1.3. Kernel ridge regression

1.4. Support Vector Machines
 ▶ 1.4.1. Classification
 ▶ 1.4.1.1. Multi-class classification
 ▶ 1.4.1.2. Storing and probability estimates
 ▶ 1.4.1.3. Unbalanced problems
 ▶ 1.4.2. Regression
 ▶ 1.4.3. Density estimation, novelty detection

5.3. Preprocessing data
 ▶ 5.3.1. Standardization, or mean removal and variance scaling
 ▶ 5.3.1.1. Scaling features to a range
 ▶ 5.3.1.2. Scaling sparse data
 ▶ 5.3.1.3. Scaling data with outliers
 ▶ 5.3.1.4. Centering kernel matrices
 ▶ 5.3.2. Non-linear transformation
 ▶ 5.3.2.1. Mapping to a uniform distribution
 ▶ 5.3.2.2. Mapping to a Gaussian distribution
 ▶ 5.3.3. Normalization
 ▶ 5.3.4. Encoding categorical features
 ▶ 5.3.5. Discretization
 ▶ 5.3.5.1. K-bins discretization
 ▶ 5.3.5.2. Feature binarization
 ▶ 5.3.6. Imputation of missing values
 ▶ 5.3.7. Generating polynomial features
 ▶ 5.3.8. Custom transformers

5.4. Imputation of missing values
 ▶ 5.4.1. Univariate vs. Multivariate Imputation
 ▶ 5.4.2. Univariate feature imputation
 ▶ 5.4.3. Multivariate feature imputation
 ▶ 5.4.3.1. Flexibility of IterativeImputer
 ▶ 5.4.3.2. Multiple vs. Single Imputation
 ▶ 5.4.4. References
 ▶ 5.4.5. Marking imputed values

5.2. Feature extraction
 ▶ 5.2.1. Loading features from dict
 ▶ 5.2.2. Feature hashing
 ▶ 5.2.2.1. Implementation details
 ▶ 5.2.3. Text feature extraction
 ▶ 5.2.3.1. The Bag of Words representation
 ▶ 5.2.3.2. Sparsity
 ▶ 5.2.3.3. Common Vectorizer usage
 ▶ 5.2.3.3.1. Using stop words
 ▶ 5.2.3.4. TF-IDF term weighting
 ▶ 5.2.3.5. Decoding text files
 ▶ 5.2.3.6. Applications and examples
 ▶ 5.2.3.7. Limitations of the Bag of Words representation
 ▶ 5.2.3.8. Vectorizing a large text corpus with the hashing
 ▶ 5.2.3.9. Performing out-of-core scaling with Hashing
 ▶ 5.2.3.10. Customizing the vectorizer classes
 ▶ 5.2.4. Image feature extraction
 ▶ 5.2.4.1. Patch extraction
 ▶ 5.2.4.2. Connectivity graph of an Image
(Reality) Choices

- Just in Scikit-Learn and XGBoost:
 - 51 classes/functions for transformations
 - 96 classes/functions for learning
- Most pipelines have multiple steps
- Matching components requires expertise (and empirical evaluation)
import xgboost
import sklearn
import sklearn.feature_extraction.text
import sklearn.linear_model.logistic
import sklearn.preprocessing.imputation
import runtime_helpers

from sklearn.pipeline import Pipeline

read inputs and split
X, y = runtime_helpers.read_input('titanic.csv', 'Survived')
X_train, y_train, X_val, y_val = train_test_split(X, y, test_size=0.25)

build pipeline with transforms and model
pipeline = Pipeline([
 ('t0', runtime_helpers.ColumnLoop(sklearn.feature_extraction.text.CountVectorizer)),
 ('t1', sklearn.preprocessing.imputation.Imputer()),
 ('model', sklearn.linear_model.logistic.LogisticRegression()),
])

fit pipeline
pipeline.fit(X_train, y_train)

evaluate on held-out data
print(pipeline.score(X_val, y_val))

train pipeline on train + val for new predictions
pipeline.fit(X, y)

def predict(X_new):
 return pipeline.predict(X_new)
import xgboost
import sklearn
import sklearn.feature_extraction.text
import sklearn.linear_model.logistic
import sklearn.preprocessing.imputation
import runtime_helpers

from sklearn.pipeline import Pipeline

read inputs and split
X, y = runtime_helpers.read_input('titanic.csv', 'Survived')
X_train, y_train, X_val, y_val = train_test_split(X, y, test_size=0.25)

build pipeline with transforms and model
pipeline = Pipeline([
 ('t0', runtime_helpers.ColumnLoop(sklearn.feature_extraction.text.CountVectorizer())),
 ('t1', sklearn.preprocessing.imputation.Imputer()),
 ('model', sklearn.linear_model.logistic.LogisticRegression()),
])

fit pipeline
pipeline.fit(X_train, y_train)

evaluate on held-out data
print(pipeline.score(X_val, y_val))

train pipeline on train + val for new predictions
pipeline.fit(X, y)

def predict(X_new):
 return pipeline.predict(X_new)
build pipeline with transforms and model

```python
pipeline = Pipeline([  
    ('t0', runtime_helpers.ColumnLoop(  
        sklearn.feature_extraction.text.CountVectorizer  
    )),  
    ('t1', sklearn.preprocessing.imputation.Imputer()) ,  
    ('model', sklearn.linear_model.logistic.LogisticRegression())  
])
```
pipeline = Pipeline([
 ('t0', runtime_helpers.ColumnLoop(
 sklearn.feature_extraction.text.CountVectorizer
)),
 ('t1', sklearn.preprocessing.imputation.Imputer()),
 ('model', sklearn.linear_model.logistic.LogisticRegression()
])
build pipeline with transforms and model
pipeline = Pipeline([
 ('t0', runtime_helpers.ColumnLoop(
 sklearn.feature_extraction.text.CountVectorizer()
)),
 ('t1', sklearn.preprocessing.imputation.Imputer()) ,
 ('model', sklearn.linear_model.logistic.LogisticRegression())
])
build pipeline with transforms and model
pipeline = Pipeline([
 ('t0', runtime_helpers.ColumnLoop(sklearn.feature_extraction.text.CountVectorizer)),
 ('t1', sklearn.preprocessing.imputation.Imputer()),
 ('model', sklearn.linear_model.logistic.LogisticRegression())
])
build pipeline with transforms and model
pipeline = Pipeline([
('t0', runtime_helpers.ColumnLoop(
 sklearn.feature_extraction.text.CountVectorizer
)),
('t1', sklearn.preprocessing.imputation.Imputer()),
('model', sklearn.linear_model.logistic.LogisticRegression())
])
Requires

import pandas as pd
import sklearn
...
Requires

- Inspecting data
- Evaluating
- Writing code

  ```python
  import pandas as pd
  import sklearn
  ...
  ```
- Reading docs
Why do I have to do this?

I’m not the first person to do machine learning.

Why can’t I just reuse what everyone else did?
Conventional Answer

• Your data isn’t like everyone else’s data

• Their pipeline won’t work for your data

• You are special and need to have your own pipeline!
Conventional Answer is Both True and False

- You do need your own pipeline
- Pipeline does depend on your data
- So you can’t just reuse someone else’s pipeline
- But your pipeline will be a lot like pipelines that other people have developed for similar data
Conventional Answer is Both True and False

• We collected 500 pipelines, which use 9 datasets, from a public forum (Kaggle)

• On average 92% of the pipelines were different from pipelines targeting other datasets

• But within a dataset only 40% of pipelines are unique on average
Learning from Programs
\{A / L\} Approach

Data Collection

Traces

kaggle

*.py

Instrument

Execute

Extract Canonical Pipelines

Train Pipeline Model

Trained Model

Generate

New Dataset

Pipelines

AL Training

Offline

AL Inference

Online

Traces
Data Collection

- Approximately 500 programs
- 9 datasets
- Collected from Kaggle
- Dynamic instrumentation inserted to collect
 - Functions called in key libraries
 - Argument summaries
 - Call dependences
How do you generate a pipeline?
argmax_t P(t_{i+1} | pipeline)
Data → CountVectorizer → Data' → Input Features → $P(t_{i+1} | \text{CountVectorizer}, \text{Data'})$
Summarizing Inputs: Data Features

- Label probability (max, min, mean)
- Mean kurtosis
- Count of columns and rows
- Count of columns by type
- Number of unique labels
- Mean skewness
- Label counts (max, min, mean)
- Percentage missing values
- Cross-column correlation (max, min, mean)
- Non-zero counts (mean)
- PDF/CDF with common distributions
- …
Dynamic Traces

- Slicing-based algorithm to extract canonical pipeline from dynamic trace

```python
[("TfidfVectorizer", 'T'),
 ("TfidfVectorizer.fit", 'T'),
 ("TfidfVectorizer.transform", 'T'),
 ("TfidfVectorizer.transform", 'T'),
 ("TruncatedSVD", 'T'),
 ("TruncatedSVD.fit_transform", 'T'),
 ("TruncatedSVD.transform", 'T'),
 ("StandardScaler", 'T'),
 ("TransformerMixin.fit_transform", 'T'),
 ("TransformerMixin.transform", 'T'),
 ("RandomForestClassifier", 'L'),
 ("BaseForest.fit", 'L'),
 ("ForestClassifier.predict", 'E')]
```
Generating Multiple Pipelines: Beam Search with Probabilistic Model
Extend each with top k components based on predicted probability.

Previous Iteration

P_1 ... P_k

k current pipelines

Sort based on pipeline probability and prune to k.
Extend each with top k components based on predicted probability.
Previous Iteration

\[\text{Gen}(P_{T,L}, P_i) \]

\[P_1^1 \quad \ldots \quad P_1^k \quad \ldots \quad P_k^1 \quad \ldots \quad P_k^k \]

Sort based on pipeline probability and prune to k

\[P_3^2 \quad P_5^5 \quad \ldots \quad P_4^2 \quad P_4^1 \]

Keep top k pipelines based on predicted probability
Previous Iteration

\[Gen(P_{T,L}, P_i) \]

\[
\begin{align*}
P_1^1 & \\
& \quad \cdots \\
& \quad \cdots \\
P_1^k & \\
& \quad \cdots \\
P_k^1 & \\
& \quad \cdots \\
P_k^k & \\
\end{align*}
\]

Sort based on pipeline probability and prune to k

\[
\begin{align*}
P_3^2 & \\
&P_1^5 \\
& \quad \cdots \\
P_4^2 & \\
&P_4^1 \\
\end{align*}
\]

Next Iteration

Iterate until provided depth-bound
Previous Iteration

\[\text{Gen}(P_{T,L}, P_i) \]

\[P_1 \quad \ldots \quad P_k \]

\[P_1^1 \quad \ldots \quad P_k^1 \]

Sort based on pipeline probability and prune to k

\[P_3^2 \quad P_1^5 \quad \ldots \quad P_4^2 \quad P_4^1 \]

Iterate to depth-bound

Final Iteration

Sort on \[\text{Score}(P_i, X_{\text{val}}, y_{\text{val}}) \]

Use validation data to sort final set of pipelines
Evaluation
AutoML Systems

- (Ours) learning from programs
- Bayesian-optimization for pipelines, ensemble-based
- Genetic programming over tree-based pipelines
Benchmark Datasets

- TPOT and Autosklearn paper datasets (21)
 - Pre-processed so all systems run
 - Sourced from PLMB and OpenML

- Kaggle datasets (6)
 - Varied datatypes
 - No initial pre-processing

- Mulan datasets (4)
 - Multi-target regression/classification
Search Time Configuration

- Autosklearn/TPOT given 1 hour budget, increased to 2 hours if search does not complete

- AL search depth bounded, time limit per operation in pipeline
Evaluation Dimensions

• Pipeline generation time
• Ability to handle new datasets
• Accuracy of generated pipelines
Results:
Pipeline generation time

![Graph showing pipeline generation time for TPOT/Autosklearn Benchmark Datasets, with two budget levels: 1 hr and 2 hr, and AL comparison.](graph.png)
Results:
Ability to handle new datasets

<table>
<thead>
<tr>
<th>Dataset Source</th>
<th># Datasets</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaggle</td>
<td>6</td>
<td>Only AL executed out-of-box</td>
</tr>
<tr>
<td>Mulan</td>
<td>4</td>
<td>Only AL executed out-of-box</td>
</tr>
</tbody>
</table>
Results:
Accuracy of generated pipelines

<table>
<thead>
<tr>
<th>Dataset Source</th>
<th># Datasets</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPOT Paper</td>
<td>9 / 9</td>
<td>7 / 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparable</td>
</tr>
<tr>
<td>Autosklearn Paper</td>
<td>12 / 13</td>
<td>10 / 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparable</td>
</tr>
</tbody>
</table>
Improvement over Random Strategies

Average performance of top 10 pipelines
Improvement over Random Strategies

Average performance of top 10 pipelines

Search Randomly in AL subset of API

Improves 19 of 21 datasets

+8.9 F1 on average
Improvement over Random Strategies

Average performance of top 10 pipelines

\[P(\text{pipeline}) \]

Search with AL

Improves 19 of 21 datasets

Search Randomly in AL subset of API

Improves 19 of 21 datasets

Search Randomly

+6.5 F1 on average
Instrumentation Impact

- 80% of example programs have runtime ratio between 1.0 and 2.0 when instrumented
Future Work

• AL calls components with default hyperparameters
 • Modify instrumentation and probability model to account for hyperparameter “equivalence classes”
 • Or use AL pipelines as warm-start for hyperparameter search in other tools

• Introduce new libraries
 • Adapt code generation/instrumentation as necessary

• Explore similar approach in other data analytics tasks (e.g. data visualization)
Conclusion

• Learning supervised learning pipelines from programs can:
 • Speed up and simplify search
 • Produce comparable performance to existing AutoML tools
 • Extend to more datasets without additional effort